
J. Phys. B: At. Mol. Opt. Phys. 33 (2000) 2419–2435. Printed in the UK PII: S0953-4075(00)50294-6

Breit–Pauli energy levels, lifetimes and transition data:
boron-like spectra

Georgio Tachiev and C Froese Fischer
Department of Electrical Engineering and Computer Science, Vanderbilt University, Box 1679 B,
Nashville, TN 37235, USA

Received 7 March 2000, in final form 5 May 2000

Abstract. Breit–Pauli results for energy levels, lifetimes and some transition data are reported
for all levels up to 2s2p(3P)3s 2Po

J of the B-like spectrum for 5 � Z � 14. For all but the lowest
members of the sequence, these include the 2s22p, 2s2p2, 2p3, 2s23s, 2s23p, and 2s23d and 2s2p3s
configurations, though only the 2s2p(3P)3s terms of the latter. A simultaneous optimization scheme
was applied so that a radial basis could be determined for a set of terms that mix in the Breit–Pauli
approximation. Convergence of the LS line strength is used as a factor in estimating accuracy
as well as the agreement of energy levels and their splitting between theory and experiment. The
results are evaluated by comparison with other theoretical results and experiment for transition
rates.

1. Introduction

In the past, it has been common practice to perform calculations on small groups of transitions,
such as a given transition of an isoelectronic sequence or transitions for a Rydberg series. Often
these calculations were totally non-relativistic, with possible scaling to observed transition
energies. More recently, calculations for groups of transitions have been reported that include
the most important correlation along with Breit–Pauli interactions [1, 2]. The accuracy of the
resulting transition rates was in the range of 10–20%, depending on the transition. In a recent
paper on the Be sequence [3], systematic, large-scale Breit–Pauli calculations were reported
for all allowed E1 transitions between the levels of a portion of the spectrum, including the
ground state. A consequence of such an approach is that lifetimes can be reported, which are
important when comparing with experimental data for excited states. In some cases, some
forbidden transitions were computed as well. At the same time, through comparison with
many high-precision experiments and benchmark calculations, estimates of uncertainty were
evaluated. The accuracy of the transition rates was often less than 1%, though uncertainties
could be larger for very small transition energies or for transitions with extensive cancellation
during the calculation of the line strength.

In this paper, we extend the approach to the boron-like sequence by considering all levels
up to 2s2p(3P)3s 2Po

J , for Z = 5, . . . , 14. Some results are compared with experiment and
recent theory.

2. Computational procedures and optimization strategies

The underlying procedures are the same as those described in the Be-like paper [3] and will
not be repeated here.
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Briefly, the non-relativistic multiconfiguration Hartree–Fock (MCHF) approach
determines an approximate wavefunction 	 for the state labelled γLS of the form

	(γLS) =
∑

j

cj
(γjLS) (1)

where γ represents the dominant configuration, and any additional quantum numbers required
for uniquely specifying the state being considered. The configuration state functions (CSF)
{
} are built from a basis of one-electron spin–orbital functions

φnlmlms
= 1

r
Pnl(r)Ylml

(θ, ϕ)χms
. (2)

With the wavefunction expansion is associated an energy functional for one LS term and
eigenvalue. The traditional MCHF procedure [4] consists of optimizing to self-consistency
both the radial functions {Pnj lj (r)} and mixing coefficients {cj } of this energy functional.
However, in the Breit–Pauli approximation, the wavefunction for a specific J is an expansion
over terms. In order to obtain a suitable basis for all these terms, the previous paper introduced
the notion of simultaneous optimization of energy expressions derived from several different
terms or even several eigenvalues of the same term. Furthermore, the different energy
expressions could be weighted according to importance. The result of such an approach is a
basis adequate for simultaneously representing the different terms that mix in a Breit–Pauli
approximation.

Systematic, large-scale methods were applied in which the wavefunction expansions were
obtained from orbital sets of increasing size, allowing for the monitoring of convergence. The
model for expansion was a core-polarization model and is best described in terms of a union of
two sets, whose members satisfy certain rules in the distribution of principal quantum numbers,
as in

1s{1, 2}{2, 3}{2, 3, . . . , n � 6}2 ∪ 1s2{2}{2, 3, 4, . . . , n � 8}2.

In this notation, in the first set, the first electron has a principal quantum number of n = 1; the
second has a principal quantum number of either n = 1 or 2, the third either 2 or 3, and the last
two electrons have unrestricted principal quantum numbers but with n � 6. The maximum
n (and l) characterize a particular expansion in this model. The set of configuration states
with a single 1s orbital represents core polarization, whereas those with 1s2 are part of the
valence correlation. In all cases, correlation in 1s2 was neglected so that the computational
size could be constrained. Also, all expansions were restricted to l � 6 or i-orbitals. Note that
by specifying the expansions by rules that focus on the principal quantum number and include
all possible angular quantum numbers, 2s–2p degeneracy effects are automatically included,
even though the higher-n virtual orbitals are only doubly occupied.

Once a set of radial orbitals has been obtained, the relativistic corrections can be taken into
account within the Breit–Pauli approximation by diagonalizing the Breit–Pauli Hamiltonian
[4] to obtain the intermediate coupling wavefunctions

	(γ J ) =
∑

LS

∑

j

cj (LS)
(γjLSJ ). (3)

Thus the expansion is now the sum of expansions over a set of terms. For all expansions,
the iterative Davidson method [5] was used to determine a few of the lowest eigenvalues and
eigenvectors [6].

All the results in this paper, unless specifically stated as being LS results, are based on the
diagonalization of the Breit–Pauli Hamiltonian in which the orbit–orbit term has been omitted.
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This operator does not contribute to the mixing of terms, and behaves like a small correlation
correction. Experiments on Li-like atoms [7] have shown that the inclusion of orbit–orbit
terms can double the computation times for generating the Breit–Pauli interaction matrix, yet
has a negligible effect at the present level of accuracy. For this reason, it has been omitted, as
is common practice. In the rest of the paper, we will refer to our results as MCHF results, and
only use MCHF+BP for emphasis, when needed.

The oscillator strengths f are calculated using the standard, non-relativistic operators for
length and velocity forms (see [3] for details). The non-relativistic line strengths allow us to
monitor the convergence between the two forms with the improvement of the wavefunctions. In
the Breit–Pauli approximation, the same length form is correct to O(α2), while the velocity form
requires a relativistic correction to the gradient operator [8]. For this reason, it is customary
to report both length and velocity results for an LS calculation, but only the length form in
the Breit–Pauli calculation. No orthonormality constraints are imposed between the two sets
of radial functions spanning the total wavefunctions of the initial and final state, allowing
separate MCHF optimizations for the two states involved.

Table 1. Optimization strategies for groups of terms. Eigenfunctions for a specific term are
designated by the dominant configuration. All weights are unity unless designated otherwise in
parentheses following the term.

Groups Additional terms or eigenfunctions

Even
2s2p2 4P, 2D, 2S, 2P 2s2p3p 4D (0.2)
2s23s 2S 2p23s 2S, 2P (0.1), 4P (0.1)
2s23d 2D 2p23d 2D, 2P (0.2), 4D (0.1)

Odd
2s22p 2Po, 2Do, 4So, 2Po 2p3 4So, 2Do, 2Po

2s23p 2Po 2p23p 2Po, 4Do (0.1), 2So (0.1), 4Po (0.1)
2s2p3s 4Po, 2s2p(3P)3s 2Po 2s22p 2Po, 2p3 4So, 2Do, 2Po, 2s23p 2Po (all 0.2)

The different states of boron and B-like ions were grouped together and a radial basis
determined for a set of terms and/or eigenvalues that were deemed to be important for the
relativistic effects. In table 1, on the left are the group of terms for which accurate Breit–Pauli
results are required. However, because these may mix with additional terms, the latter are listed
in the second group. Sometimes these are different eigenfunctions of the same terms and this is
indicated by the configuration. Mixing with some of the terms may not be particularly strong.
In such cases these LS eigenstates had a smaller weight as indicated in table 1. In all cases,
the 1s orbital was obtained from simultaneous optimization at the n = 3 level of all the terms
as indicated in table 1, but using a special expansion model with distribution 1s2{2}2{2, 3},
i.e. 1s2 with at least two n = 2 orbitals. After that, for the expansions described earlier with
n � 5, all orbitals except 1s were varied; for n = 6, all but 1s, 2s, 2p were varied, for n = 7
all but 1s, 2s, 2p, 3s, 3p, 3d, and for n = 8, all but 1s, 2s, 2p, . . . , 4s, 4p, 4d, 4f. The neutral
atom was treated similarly to the ions, though fewer states needed to be determined since all
2p3 states lie well above the ionization limit.

3. Comparison of models and effects on line strengths

For allowed transitions in B I and C II, the J -dependent relativistic corrections from a Breit–
Pauli calculation are essentially negligible, and so it is informative to compare the present
results from our model, appropriate for transition studies, with other models that have been
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used for isotope shift and hyperfine structure calculations, sensitive not only to correlation in
the outer portion of the wavefunction but also to regions closer to the nucleus.

Jönsson et al [9] have reported transition data, including the line strength, for several
allowed 2s22p–2s2p2 transitions in B I and C II. Their model was quite different from the one
used in this paper. For each LS term, single and double replacements were made from a
multireference set, including the core, a model referred to as SD-MR. Orbitals were optimized
for these expansions, systematically, up to n = 8 at which point relativistic shift corrections
(to be described later) were added as well as triple and quadruple (TQ) excitations for the
n = 5 orbital set. The final expansions ranged from 20 338 to 94 358 CSFs, depending on the
term. The triple and quadruple excitations significantly improved both the agreement with the
observed transition energy for the multiplet and the agreement between length and velocity
forms of the oscillator strength. A comparison with this model provides a check on the accuracy
of this paper as well as a check on our method for estimating the uncertainty proposed earlier
[3].

Table 2. Comparison of (a) the SD-MR model of computation followed by triple and quadruple
excitations and simple relativistic effects [9] with (b) present work, (c) experimental energies from
NIST tabulations. All energies are in cm−1 and all transitions are from the 2s22p 2Po ground state.

Non-relativistic Relativistic

Upper term �E Sl Sv �E Sl Sv

B I 2s23s 2S (a) 39 756 3.6833 3.9580 40 017 3.7876 3.9019
(b) 40 010 3.8608 3.8634 39 994 3.8613
(c) 40 029

2s2p2 2D (a) 47 991 1.9865 1.9607 47 910 1.9433 1.9368
(b) 48 026 1.9639 1.9375 48 032 1.9462
(c) 47 846

C II 2s2p2 2S (a) 96 571 2.4276 2.3408 96 478 2.4183 2.4166
(b) 96 597 2.4228 2.4149 96 668 2.4175
(c) 96 451

2s2p2 2P (a) 110 534 8.8965 8.8057 110 569 8.9075 8.8784
(b) 110 689 8.8998 8.8767 110 825 8.8977
(c) 110 610

2s2p2 2D (a) 74 872 3.3718 3.3404 74 842 3.3917 3.3887
(b) 74 959 3.3895 3.3692 75 044 3.3865
(c) 74 889

Table 2 presents data for the SD-MR model followed by TQ excitations. Unlike this
paper, where Breit–Pauli corrections with term mixing are included, in their work only the
LS-dependent relativistic shift corrections are taken into account. These are the J -independent
corrections that include the mass–velocity correction, one- and two-body Darwin terms and
spin–spin contact. For the non-relativistic calculations, the agreement between the length and
velocity forms of the line strength is notably better in this paper. After relativistic corrections
have been added (as explained above) Jönsson et al’s [9] results with TQ excitations are
generally in better agreement with the observed transition energies [10] than present work.
As for the line strength, the agreement between the length and the velocity forms is markedly
better in this paper for boron, and somewhat better for C II, with the length form in better
agreement than the two velocity forms. When relativistic corrections are added, the length
form from the two models comes into excellent agreement (one or two parts per thousand)
except for the transition to 2s23s 2S in boron where the SD-MR model appears not to be as
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Table 3. Theoretical lifetimes (in s) for excited states up to 2s2p3s 4Po of B-like systems for Z = 5, . . . , 14.

Term J Z = 5 Z = 6 Z = 7 Z = 8 Z = 9 Z = 10 Z = 11 Z = 12 Z = 13 Z = 14

2s22p 2Po 1
2
3
2 3.049E+07 4.306E+05 2.075E+04 1.916E+03 2.663E+02 4.931E+01 1.128E+01 3.039E+00 9.320E−01 3.177E−01

2s2p2 4P 1
2 6.167E+00 7.654E−03 1.374E−03 3.380E−04 1.045E−04 3.808E−05 1.571E−05 7.138E−06 3.499E−06 1.825E−06
3
2 1.562E+00 9.693E−02 1.369E−02 2.999E−03 8.657E−04 3.022E−04 1.212E−04 5.405E−05 2.621E−05 1.360E−05
5
2 3.999E−01 2.234E−02 3.559E−03 8.377E−04 2.527E−04 9.044E−05 3.667E−05 1.634E−05 7.836E−06 3.983E−06

2s2p2 2D 5
2 2.290E−08 3.451E−09 1.996E−09 1.406E−09 1.082E−09 8.771E−10 7.351E−10 6.309E−10 5.506E−10 4.517E−10
3
2 2.285E−08 3.441E−09 1.985E−09 1.396E−09 1.066E−09 8.579E−10 7.125E−10 6.044E−10 5.201E−10 4.865E−10

2s2p2 2S 1
2 4.523E−10 3.584E−10 2.790E−10 2.256E−10 1.886E−10 1.613E−10 1.399E−10 1.226E−10 1.080E−10

2s2p2 2P 1
2 2.445E−10 1.762E−10 1.380E−10 1.134E−10 9.617E−11 8.332E−11 7.337E−11 6.545E−11 5.918E−11
3
2 2.445E−10 1.762E−10 1.379E−10 1.133E−10 9.594E−11 8.297E−11 7.285E−11 6.468E−11 5.803E−11

2p3 4So 3
2 2.944E−10 2.056E−10 1.579E−10 1.280E−10 1.074E−10 9.228E−11 8.064E−11 7.136E−11 6.371E−11

2p3 2Do 5
2 1.834E−09 8.841E−10 5.850E−10 4.352E−10 3.449E−10 2.839E−10 2.399E−10 2.062E−10 1.807E−10
3
2 1.835E−09 8.848E−10 5.857E−10 4.360E−10 3.458E−10 2.849E−10 2.410E−10 2.074E−10 1.795E−10

2p3 2Po 1
2 4.966E−10 2.931E−10 2.179E−10 1.697E−10 1.380E−10 1.156E−10 9.885E−11 8.596E−11 7.529E−11
3
2 4.961E−10 2.935E−10 2.182E−10 1.701E−10 1.384E−10 1.161E−10 9.942E−11 8.659E−11 7.600E−11

2s23s 2S 1
2 3.996E−09 2.266E−09 3.194E−10 1.240E−10 6.050E−11 3.355E−11 2.025E−11 1.300E−11 8.753E−12 6.117E−12

2s23p 2P 1
2 5.006E−08 8.973E−09 4.410E−09 1.387E−09 6.713E−10 3.705E−10 2.226E−10 1.424E−10 9.571E−11 6.697E−11
3
2 5.004E−08 8.963E−09 4.400E−09 1.386E−09 6.705E−10 3.670E−10 2.222E−10 1.421E−10 9.543E−11 6.672E−11

2s23d 2D 3
2 4.629E−09 3.493E−10 7.938E−11 2.824E−11 1.270E−11 6.593E−12 3.774E−12 2.322E−12 1.508E−12 1.023E−12
5
2 4.631E−09 3.494E−10 7.945E−11 2.828E−11 1.273E−11 6.612E−12 3.788E−12 2.333E−12 1.517E−12 1.031E−12

2s2p3s 4Po 1
2 1.188E−09 2.307E−10 9.835E−11 4.949E−11 2.780E−11 1.691E−11 1.092E−11 7.381E−12 5.183E−12
3
2 1.187E−09 2.305E−10 9.820E−11 4.938E−11 2.772E−11 1.684E−11 1.085E−11 7.327E−12 5.135E−12
5
2 1.187E−09 2.300E−10 9.791E−11 4.917E−11 2.755E−11 1.671E−11 1.074E−11 7.228E−12 5.048E−12

2s2p(3P)3s 2Po 1
2 4.966E−10 3.864E−10 1.418E−10 6.813E−11 3.743E−11 2.321E−11 1.896E−11 9.692E−12 6.784E−12
3
2 4.961E−10 3.851E−10 1.411E−10 6.758E−11 3.699E−11 2.244E−11 1.794E−11 9.386E−12 6.506E−12
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Table 4. Comparison of the computed spectrum for O IV with tabulated NIST [11] data.

Level (cm−1) Splitting (cm−1)

Configuration Term J Theory Obs. Diff. Theory Obs. Diff.

2s22p 2Po 1
2
3
2 387.22 385.9 1.32 387.22 385.9 1.32

2s2p2 4P 1
2 71 521.87 71 439.8 82.07
3
2 71 653.75 71 570.1 83.65 131.88 130.30 1.58
5
2 71 838.32 71 755.5 82.82 316.45 315.70 0.75

2D 5
2 127 160.10 126 936.3 223.80
3
2 127 173.62 126 950.2 223.42 13.52 13.90 −0.38

2S 1
2 164 743.52 164 366.4 377.12

2P 1
2 180 699.39 180 480.8 218.59
3
2 180 943.38 180 724.2 219.18 243.98 243.40 0.58

2p3 4So 3
2 231 804.66 231 537.5 267.16

2Do 5
2 255 508.26 255 155.9 352.36
3
2 255 536.62 255 184.9 351.72 28.36 29.00 −0.64

2Po 1
2 289 546.21 289 015.4 530.81
3
2 289 555.50 289 023.5 532.00 9.29 8.10 1.19

2s23s 2S 1
2 357 724.81 357 614.3 110.51

2s23p 2P 1
2 390 505.04 390 161.2 343.84
3
2 390 592.30 390 248.0 344.30 87.27 86.80 0.47

2s23d 2D 3
2 419 756.15 419 533.9 222.25
5
2 419 772.73 419 550.6 222.13 16.59 16.70 −0.11

2s2p3s 4Po 1
2 439 047.29 438 849.0 198.29
3
2 439 182.67 438 983.9 198.77 135.38 134.90 0.48
5
2 439 430.24 439 230.9 199.34 382.94 381.90 1.04

2s2p(3P)3s 2Po 1
2 453 280.99 452 806.6 474.39
3
2 453 546.26 453 071.5 474.76 265.27 264.9 0.37

satisfactory. It is likely that the SD orbital basis, also optimized on core correlation, did not
adequately represent the outer portion of the wavefunction which does not contribute as much
to the energy as correlation in the core. This may account for the fact that the present results
are in better agreement with the SD-MR velocity form. Thus the present model seems to be
well suited to the computation of transition rates for the boron-like sequence, including also
transitions to the 2s23l states, and the length form is the more accurate line strength. This
suggests that the error in the line strength is less than the difference between the two forms
would imply.

4. Breit–Pauli results

The orbital basis from simultaneous optimization may be used to determine J -dependent
energy levels and transition rates. In table 3 we report the lifetimes of all the levels of the
configurations considered in this work. These are based primarily on the allowed E1 transitions
between the different states but the M2 transitions, 2s22p 2Po

J –2s2p2 4PJ ′ were also computed
as well as the E2 and M1 transitions 2s22p 2Po

1/2–2s22p 2Po
3/2, which contribute to the lifetime
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Table 5. Comparison of computed spectrum for O IV with tabulated NIST [11] data and other
theories. The second line is the difference in % between theory and observed.

Configuration Term J Obs. Present work IRONa SJSb MVGKc

O IV

2s22p 2Po 1
2
3
2 385.9 387.22 383 389 372

0.34 −0.75 0.80 −3.60

2s2p2 4P 1
2 71 439.8 71 521.87 67 925 72 107 70 106

0.11 −5.04 0.93 −1.88
3
2 71 570.1 71 653.75 68 059 72 241 70 235

0.12 −5.03 0.93 −1.88
5
2 71 755.5 71 838.32 68 246 72 434 70 413

0.12 −5.01 0.94 −1.88
2D 5

2 126 936.3 127 160.10 130 936 126 098 121 908

0.18 3.10 −0.66 −4.04
3
2 126 950.2 127 173.62 130 945 126 110 121 923

0.18 3.10 −0.66 −4.04
2S 1

2 164 366.4 164 743.52 169 367 164 788 160 426

0.23 3.00 0.26 −2.43
2P 1

2 180 480.8 180 699.39 188 768 179 035 179 375

0.12 4.49 −0.80 −0.61
3
2 180 724.2 180 943.38 189 008 179 284 179 608

0.12 4.48 −0.80 −0.61

2p3 4So 3
2 231 537.5 231 804.66 232 226 231 813 229 755

0.12 0.30 0.12 −0.77
2Do 5

2 255 155.9 255 508.26 262 131 253 849 243 729

0.14 2.70 −0.51 −4.58
3
2 255 184.9 255 536.62 262 167 253 873 243 770

0.14 2.70 −0.51 −4.58
2Po 1

2 289 015.4 289 546.21 299 326 289 700 278 883

0.18 3.50 0.24 −3.57
3
2 289 023.5 289 555.50 299 328 289 712 278 883

0.18 3.50 0.24 −3.57

Si X

2s22p 2Po 1
2
3
2 6 990 7 047.75 6 907 7 000 6 874

0.82 −1.19 0.14 −1.67

2s2p2 4P 1
2 161 010 161 689.07 157 244 161 437 160 718

0.42 −2.37 0.26 −0.18
3
2 163 490 164 205.82 159 728 163 925 163 201

0.43 −2.33 0.27 −0.18
5
2 167 060 167 784.68 163 310 167 511 166 754

0.43 −2.27 0.27 −0.18
2D 5

2 287 850 288 822.32 292 392 287 448 286 178

0.34 1.57 −0.14 −0.58
3
2 287 880 288 838.81 292 473 287 460 286 245

0.33 1.58 −0.15 −0.57
2S 1

2 367 670 368 785.69 372 843 367 741 365 775

0.30 1.40 0.02 −0.52
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Table 5. Continued.

Configuration Term J Obs. Present work IRONa SJSb MVGKc

2P 1
2 390 040 390 729.09 399 416 389 928 389 343

0.18 2.38 −0.03 −0.18
3
2 394 030 394 730.53 403 458 393 889 393 294

0.18 2.36 −0.02 −0.19

2p3 4So 3
2 509 330 510 841.65 510 174 509 543 508 580

0.30 0.17 0.04 −0.15
2Do 5

2 575 430 577 255.29 583 822 574 823 571 902

0.32 1.45 −0.11 −0.61
3
2 575 450 577 310.99 583 853 574 863 571 928

0.32 1.45 −0.11 −0.61
2Po 1

2 646 760 649 306.20 658 272 646 133 643 250

0.39 1.76 −0.10 −0.54
3
2 647 390 649 944.81 658 833 646 775 643 825

a IRON [2].
b SJS [12].
c MVGK [13].

of the latter. In other cases, the contributions from forbidden transitions to the lifetime are
negligible but calculations were also performed for 2s2p2 4PJ –2s2p2 4PJ ′ . A complete set
of transition data (transition energies, line strength, oscillator strengths, transition rates) is
available at http://www.vuse.vanderbilt.edu/∼cff/mchf collection This site also reports LS

convergence trends, including the length and velocity forms of the line strength. As shown in
our earlier paper [3] the latter can be used in the estimation of accuracy. All other reported
data are based on Breit–Pauli line strengths in the length form. For each atom or ion, an ascii
file may be viewed or downloaded that contains all the information about the transitions in
floating point form, suitable for processing.

5. Accuracy of Breit–Pauli energies

The accuracy of computed oscillator strengths and transition rates depends not only on the line
strength but also on the transition energies. The latter can often be measured more accurately
than computed, and computed transition data can be improved through scaling so that, in effect,
the observed transition energy is used. However, for the production of large amounts of data,
this is not practical since, particularly for more highly ionized systems, the data may not be
available. Our aim in this paper is to predict transitions to within a fraction of a per cent. This,
of course, is more easily achieved when the transition energy is large than when it is small.

Table 4 compares the computed spectrum with observation for O IV, where both correlation
and relativistic effects are important. The difference in the excitation energies (theory −
observed) appears to be largest for 2p3 2Po

J , possibly because of the neglect of core correlation,
since 2p5 is an allowed configuration for this term. The discrepancies for 2s2p(3P)3s 2Po

J

are almost as large. In all other cases, the difference is a few 100 cm−1, ranging from 80 to
377 cm−1. The splitting is also reported. It is defined here to be the energy with respect to
the lowest level of the multiplet so that this value for the highest level gives the spread of the
multiplet. The latter is a useful measure of the adequacy of the Breit–Pauli approximation,
as was described in the Be-like paper [3]. All the theoretical energies and splittings were
computed from variational total energies with somewhat more precision than displayed in this
table.
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Table 6. Accuracy indicators for allowed transitions. The first line shows the differences between
Sv and Sl in per cent and the second line the differences (in %) between computed Breit–Pauli
transition energies and transition energies from NIST data (average for each term).

Transition 5 6 7 8 9 10 11 12 13 14

2s22p 2Po–2s2p2 2D 1.35 0.60 0.47 0.29 0.24 0.23 0.21 0.20 0.15 0.13

0.39 0.22 0.22 0.18 0.15 0.16 0.19 0.21 0.25 0.33

2s22p 2Po–2s2p2 2S 0.33 0.24 0.23 0.50 0.24 0.14 0.14 0.12 0.11

0.22 0.24 0.23 0.27 0.24 0.21 0.24 0.25 0.30

2s22p 2Po–2s2p2 2P 0.26 0.18 0.15 0.14 0.13 0.12 0.11 0.11 0.10

0.20 0.12 0.18 0.15 0.16 0.19 0.21 0.25 0.33

2s22p 2Po–2s23s 2S −0.07 0.41 0.44 0.15 0.09 0.06 0.02 0.01 −0.003 −0.01

−0.09 −0.02 0.02 0.03 0.03 0.04 0.03 0.05 0.05 0.08

2s22p 2Po–2s23d 2D −0.09 −0.01 0.15 −0.08 −0.09 −0.06 −0.05 −0.05 −0.05 −0.04

−0.03 0.06 0.05 0.05 0.01 0.04 0.02 0.02 0.01

2s2p2 4P–2p3 4So 0.11 −4.83 −3.90 0.11 0.11 0.09 0.10 0.10 0.09

0.13 0.13 0.12 0.10 0.11 0.12 0.15 0.18 0.23

2s2p2 4P–2s2p3s 4Po 0.31 0.88 0.42 0.35 0.30 0.26 0.24 0.21 0.20

0.02 0.04 0.03 0.03 0.04 0.02 0.03 0.03 0.03

2s2p2 2D–2p3 2Do 0.14 0.11 0.19 0.19 0.16 0.11 0.09 0.10 0.09

0.09 0.06 0.10 0.11 0.16 0.12 0.16 0.23 0.30

2s2p2 2D–2p3 2Po −0.16 0.09 0.11 0.13 0.10 0.11 0.10 0.11 0.25

−0.04 0.18 0.18 0.20 0.20 0.22 0.27 0.30 0.44

2s2p2 2D–2s2p(3P)3s 2Po −0.60 0.00 0.12 0.17 0.15 0.11 0.10 0.10

0.11 0.08 0.08 0.05 0.06 0.05 0.05 0.05

2s2p2 2S–2p3 2Po 2.73 4.02 2.24 1.46 1.24 0.84 0.84 0.81 0.68

−0.04 −0.04 0.05 0.02 0.02 −0.01 0.21 0.25 0.34

2s2p2 2S–2s23p 2Po −0.43 0.23 −0.13 0.15 0.14 0.14 0.10 0.08 0.29

−0.12 0.14 0.12 0.05 0.11 0.20 0.25 0.32 0.51

2s2p2 2S–2s2p(3P)3s 2Po 0.30 −0.16 0.55 0.29 0.36 0.20 0.18 0.18

0.07 0.03 0.02 0.02 0.04 0.04 0.04 0.04

2s2p2 2P–2p3 2Do −1.56 −1.93 −0.28 0.20 0.04 0.36 0.36 0.47 0.36

−0.20 −0.13 −0.01 −0.07 −0.02 −0.02 0.23 0.25 0.30

2s2p2 2P–2p3 2Po 1.03 0.97 1.01 0.86 0.78 0.62 0.59 0.53 0.48

0.05 0.19 0.18 0.16 0.27 0.23 0.25 0.34 0.62

2s2p2 2P–2p3 2Po −1.58 0.16 0.21 0.22 0.24 −0.28 0.27 0.24 0.43

−0.15 0.33 0.29 0.28 0.29 0.33 0.38 0.42 0.73

2s2p2 2P–2s23p 2Po −21.3 8.23 −8.46 −7.85 −5.78 −4.50 −3.74 −3.10 −0.55

−0.34 0.01 0.06 0.02 0.03 −0.01 0.16 0.20 0.18

2s2p2 2P–2s2p(3P)3p 2Po −1.79 −1.50 −1.05 −1.01 −1.03 −1.02 −0.97 −1.34

0.17 0.09 0.09 0.02 0.07 0.06 0.05 0.07

2p3 2Do–2s23d 2D 141 −17.5 −0.37 −5.04 −1.79 −0.12 −1.23 0.04 −0.88

4.78 −0.18 −0.08 −0.04 −0.11 −0.03 −0.07 −0.08 −0.10

2p3 2Po–2s23s 2S 65.7 44.2 −44.5 −12.3 0.63 5.40 4.42 5.08 3.98

0.29 4.48 −0.62 −0.24 −0.14 −0.13 −0.11 −0.10 0.39
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Table 6. Continued.

Transition 5 6 7 8 9 10 11 12 13 14

2p3 2Po–2s23d 2D 168 −12.2 −30.8 −11.7 −2.49 2.81 3.07 2.93 3.61

0.58 −0.79 −0.23 −0.13 −0.16 −0.09 −0.11 −0.12 −0.17

2s23s 2S–2s23p 2Po 9.37 1.29 −0.33 0.35 −0.12 −0.24 −0.38 −0.43 −0.42 −0.47

4.94 1.10 0.52 0.71 0.30 0.26 0.03 0.05 0.05 0.39

2s23s 2S–2s2p(3P)3s 2Po 1.61 0.80 0.63 0.41 0.28 0.21 0.16 0.12

0.52 0.38 0.37 0.27 0.39 0.32 0.33

2s23p 2Po–2s23d 2D −7.69 −1.18 1.42 −0.08 0.18 0.41 0.40 0.39 0.35 0.47

−1.09 −0.01 −0.42 −0.04 −0.79 0.25 0.02 0.02 0.02

2s23d 2D–2s2p(3P)3s 2Po 3.29 1.28 3.11 0.03 2.03 0.12 0.38 0.02

0.89 0.75 0.97 1.46 1.03 1.64 1.95 2.73

Table 5 compares present transitions energies for O IV and Si X, with observation and
similar results from other theories. The error in per cent is given below each quoted energy.
This paper is totally ab initio. The average error is about 0.2% in O IV, but increases somewhat
in Si X because of higher-order relativistic corrections. The IRON project [2] work includes
semi-empirical term energy corrections. Even so the errors are still a few per cent. The
RMBPT results of Safronova et al [12] employ a Z-dependent theory and, indeed, the errors
in the energy decrease with Z. Merkelis et al’s [13] values also are Z-dependent though errors
generally are larger than those of Safronova et al.

The accuracy of our computed transition rates depends on the accuracy of the energy as
well as the discrepancy in the length and velocity forms of the line strength. In table 6, these
accuracy indicators for allowed transitions are reported, first the difference in the length and
velocity forms of the line strength (in per cent with respect to the average (Sl + Sv)/2) of the
LS line strength and then the error (in per cent) in the transition energy from the Breit–Pauli
calculation. Here we see an improving trend in the line strength as Z increases as well as the
variation in this accuracy depending on the transition. Note the particularly large discrepancy
for the 2p3 2Po

J –2s23s 2SJ ′ transition which arises largely from correlation with 2p23s in the
upper state, accompanied by cancellation in the 2p–3s transition matrix element. The largest
error in a transition energy occurs for 2s23p 2Po

J –2s23d 2DJ ′ in boron where the transition
energy is small. For the ions, the error in the transition energy (as well as excitation energy)
is below the 1% level but now the errors first decrease with increasing Z, then, in quite a few
instances, begin a slow increase, indicating the limitations of Breit–Pauli for high Z.

As an example of some of the data available at the internet site, table 7 shows a portion
of the E1 line list and associated data for O IV. Omitted are some of the intercombination lines
with small transition rates. In this table are included the fully ab initio data and the energy
scaled transition rates along with uncertainty estimates. The latter, in per cent, are the error
in the energy plus the discrepancy in the forms of the non-relativistic line strength, also in
per cent. This formula provided reasonable estimates of the uncertainties in our earlier paper
[3].

6. Comparison with previous results, experiment and semi-empirical evaluations

Doubly ionized nitrogen is one of the important ions in astrophysics. Since the early study
by Nussbaumer and Storey [16], relatively few theoretical studies have been undertaken until
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Table 7. A portion of the computed line list data for O IV, along with scaled transition rates that
included uncertainty estimates. We have omitted some of the intercombination lines with small
transition rates.

Multiplet Ji–Jk E (cm−1) S gf Aki

2s23p 2Po–2s23d 2D 3
2 – 3

2 29 163.84 1.3138 0.116 39 1.6508(0.0082)E+07
3
2 – 5

2 29 180.43 11.8279 1.048 40 9.9243(0.0500)E+07
1
2 – 3

2 29 251.11 6.5665 0.583 45 8.3247(0.0415)E+07

2s23s 2S–2s23p 2Po 1
2 – 1

2 32 780.23 3.6573 0.364 17 1.3051(0.0137)E+08
1
2 – 3

2 32 867.50 7.3162 0.730 42 1.3182(0.0138)E+08

2s2p2 2P–2p3 2Do 3
2 – 5

2 74 564.88 1.8389 0.416 50 2.5744(0.0305)E+08
3
2 – 3

2 74 593.24 0.1981 0.044 89 4.1652(0.0493)E+07
1
2 – 3

2 74 837.23 1.0332 0.234 86 2.1934(0.0259)E+08

2s2p2 2P–2p3 2Po 3
2 – 1

2 108 602.84 0.3346 0.110 39 4.3426(0.0218)E+08
3
2 – 3

2 108 612.13 1.7013 0.561 29 1.1042(0.0055)E+09
1
2 – 1

2 108 846.82 0.6853 0.226 56 8.9532(0.0449)E+08
1
2 – 3

2 108 856.11 0.3184 0.105 27 2.0802(0.0104)E+08

2s2p2 2S–2p3 2Po 1
2 – 1

2 124 802.70 0.1961 0.074 33 3.8614(0.0135)E+08
1
2 – 3

2 124 811.99 0.4220 0.159 98 4.1557(0.0146)E+08

2s22p 2Po–2s2p2 2D 3
2 – 5

2 126 772.88 1.0339 0.398 15 7.1135(0.0330)E+08
3
2 – 3

2 126 786.40 0.1119 0.043 11 1.1557(0.0054)E+08
1
2 – 3

2 127 173.62 0.5784 0.223 43 6.0257(0.0278)E+08

2s2p2 2D–2p3 2Do 3
2 – 5

2 128 334.64 0.1387 0.054 06 9.8977(0.0288)E+07
5
2 – 5

2 128 348.16 1.8951 0.738 84 1.3531(0.0039)E+09
3
2 – 3

2 128 363.00 1.2080 0.471 02 1.2942(0.0038)E+09
5
2 – 3

2 128 376.52 0.1419 0.055 33 1.5207(0.0044)E+08

2s2p2 4P–2p3 4So 5
2 – 3

2 159 966.34 1.5243 0.740 67 3.1606(0.1266)E+09
3
2 – 3

2 160 150.91 1.0163 0.494 40 2.1146(0.0847)E+09
1
2 – 3

2 160 282.80 0.5082 0.247 42 1.0600(0.0426)E+09

2s2p2 2D–2p3 2Po 3
2 – 1

2 162 372.60 0.6628 0.326 93 2.8747(0.0086)E+09
3
2 – 3

2 162 381.89 0.1356 0.066 86 2.9399(0.0088)E+08
5
2 – 3

2 162 395.41 1.1806 0.582 37 2.5611(0.0077)E+09

2s22p 2Po–2s2p2 2S 3
2 – 1

2 164 356.30 0.5177 0.258 47 2.3286(0.0106)E+09
1
2 – 1

2 164 743.52 0.2772 0.138 70 1.2555(0.0057)E+09

2s22p 2Po–2s2p2 2P 3
2 – 1

2 180 312.17 0.4170 0.228 40 2.4767(0.0674)E+09
3
2 – 3

2 180 556.15 2.0269 1.111 63 6.0432(0.0165)E+09
1
2 – 1

2 180 699.39 0.7977 0.437 83 4.7679(0.0130)E+09
1
2 – 3

2 180 943.38 0.4020 0.220 98 1.2065(0.0033)E+09

2s2p2 2D–2s23p 2Po 3
2 – 1

2 263 331.42 0.0267 0.021 32 4.9314(0.1128)E+08
3
2 – 3

2 263 418.69 0.0053 0.004 25 4.9207(0.1126)E+07
5
2 – 3

2 263 432.21 0.0479 0.038 32 4.4347(0.1015)E+08

2s22p 2Po–2s23s 2S 3
2 – 1

2 357 337.59 0.1164 0.126 35 5.3808(0.0097)E+09
1
2 – 1

2 357 724.81 0.0579 0.062 91 2.6851(0.0048)E+09
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Table 7. Continued.

Multiplet Ji–Jk E (cm−1) S gf Aki

2s2p2 4P–2s2p3s 4Po 5
2 – 3

2 367 344.35 0.1824 0.203 51 4.5794(0.0208)E+09
3
2 – 1

2 367 393.54 0.1686 0.188 20 8.4722(0.0386)E+09
1
2 – 1

2 367 525.42 0.0337 0.037 63 1.6954(0.0078)E+09
3
2 – 3

2 367 528.92 0.0540 0.060 28 1.3579(0.0062)E+09
5
2 – 5

2 367 591.91 0.4261 0.475 80 7.1474(0.0326)E+09
1
2 – 3

2 367 660.80 0.1687 0.188 36 4.2459(0.0194)E+09
3
2 – 5

2 367 776.48 0.1825 0.203 88 3.0657(0.0140)E+09

2s22p 2Po–2s23d 2D 3
2 – 3

2 419 368.93 0.1574 0.200 52 5.8808(0.0079)E+09
3
2 – 5

2 419 385.51 1.4155 1.803 24 3.5259(0.0047)E+10
1
2 – 3

2 419 756.15 0.7855 1.001 53 2.9427(0.0039)E+10

the work by the Belfast group, the latest publication being by Bell et al [1]. Their method
is not unlike the present one except for the fact that Slater-type orbitals are used for radial
functions and their correlation orbitals are limited to 4p, 5p, 4d, 5d, 4f, with the other orbitals,
2p, 3s, 3p, 3d, being occupied in at least one of the states. To improve the accuracy of their
final results, term-energy corrections were used that shift LS blocks during the diagonalization
of the Breit–Pauli Hamiltonian to bring energies into close agreement with observation. No
conclusion was reached on accuracy.

In table 8, our energy-scaled transition rates with uncertainties are compared with those
of Bell et al [1] (BHSB), recently reported relativistic many-body perturbation results by
Safronova et al [15] (SJL), and the 1979 results obtained by Nussbaumer and Storey [16] (NS).
The latter are remarkably accurate given that they were computed 20 years ago. Safronova
et al’s [15] values appear on the whole not to be as accurate. This is not unexpected since N2+

is still a relatively lowly ionized system. Agreement with the Belfast results, on the whole, is
excellent. Their method appears to be accurate to a few per cent. The uncertainty estimates
quoted for our results are derived from an uncertainty in per cent, where the latter is the sum
of the error in the energy plus the discrepancy in length and velocity forms of the oscillator
strength, all in per cent. The largest uncertainty is for the 2s2p2 4P–2p3 4So multiplet where
this value is as large as 6%. On the other hand, the difference with BHSB is only 1–2%. Most
other uncertainties are a fraction of a per cent. Note that the uncertainties in the table are given
as absolute values (not per cent) with the same exponent as the transition rate itself.

Of particular importance in astrophysics are the intercombination lines from the multiplet,
2s22p 2Po–2s2p2 4P for which a number of theoretical results have been reported as well as
recent results from high-precision experiments. These are compared in table 9 for C II, N III,
and O IV. Results reported as theory are from Breit–Pauli calculations, except Merkelis et al’s
[13] results which are derived from a Z-dependent theory, with O IV being their lowest ion. The
present adjusted values, were obtained by rediagonalizing the interaction matrices of the states
involved and shifting diagonal energies to agree with observation. The quoted uncertainties
are the difference between these adjusted values and the original, ab initio ones plus the error
in the line strength for 2s22p 2Po–2s2p2 2D, which had the largest discrepancy for allowed
transitions between these configurations. The agreement with the results reported by Brage
et al [21, 20] is excellent but the methodologies are also similar. Our results with uncertainties
overlap with some of the most recent experimental values [18, 19]. In C II, there is good
agreement with transition rates from an upper level with different experiments, but not the
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Table 8. Ab initio energy data for transitions in N III, along with scaled transition rates (Aki ) that
included uncertainty estimates (un). Omitted are some of the intercombination lines with small
transition rates.

Multiplet Ji–Jk E (cm−1) Aki (un) BHSB [1] SJL [15] NS [16]

2s23p 2Po–2s23d 2D 3
2 – 3

2 21 535.78 1.1822(0.0169)E+07 1.337E+07
3
2 – 5

2 21 541.54 7.0999(0.1020)E+07 8.029E+07
1
2 – 3

2 21 571.92 5.9391(0.0852)E+07 6.718E+07

2s23s 2S–2s23p 2Po 1
2 – 1

2 24 491.04 8.5406(0.0729)E+07 8.730E+07
1
2 – 3

2 24 527.17 8.5795(0.0732)E+07 8.769E+07

2s2p2 2P–2p3 2Do 3
2 – 5

2 57 196.64 1.4500(0.0173)E+08 1.527E+08 1.63E+08 1.67E+08
3
2 – 3

2 57 211.16 2.4570(0.0284)E+07 2.503E+07 2.69E+07 2.74E+07
1
2 – 3

2 57 322.09 1.2663(0.0147)E+08 1.290E+08 1.37E+08 1.41E+08

2s2p2 2P–2p3 2Po 3
2 – 1

2 84 698.97 2.8471(0.0141)E+08 2.915E+08 2.92E+08 3.01E+08
3
2 – 3

2 84 703.10 7.1848(0.0356)E+08 7.355E+08 7.34E+08 7.58E+08
1
2 – 1

2 84 809.91 5.7855(0.0287)E+08 5.992E+08 5.91E+08 6.11E+08
1
2 – 3

2 84 814.04 1.3956(0.0069)E+08 1.430E+08 1.44E+08 1.47E+08

2s2p2 2S–2p3 2Po 1
2 – 1

2 99 541.34 2.4382(0.0140)E+08 2.511E+08 2.89E+08 3.09E+08
1
2 – 3

2 99 545.47 2.5347(0.0145)E+08 2.606E+08 2.96E+08 3.19E+08

2s22p 2Po–2s2p2 2D 3
2 – 5

2 101 075.31 4.9769(0.0347)E+08 4.977E+08 4.70E+08 5.05E+08
3
2 – 3

2 101 082.12 8.1782(0.0567)E+07 8.188E+07 7.77E+07 8.31E+07
1
2 – 3

2 101 257.13 4.1869(0.0291)E+08 4.187E+08 3.94E+08 4.25E+08

2s2p2 2D–2p3 2Do 3
2 – 5

2 102 106.10 6.6038(0.0109)E+07 6.714E+08 7.17E+07 7.39E+07
5
2 – 5

2 102 112.91 9.1288(0.0143)E+08 9.282E+08 9.94E+08 1.02E+09
3
2 – 3

2 102 120.62 8.7572(0.0150)E+08 8.912E+08 9.56E+08 9.82E+08
5
2 – 3

2 102 127.43 1.0057(0.0017)E+08 1.023E+08 1.08E+08 1.12E+08

2s2p2 4P–2p3 4So 5
2 – 3

2 129 638.97 2.4194(0.1200)E+09 2.448E+09 2.26E+09 2.50E+09
3
2 – 3

2 129 720.04 1.6161(0.0802)E+09 1.635E+09 1.51E+09 1.67E+09
1
2 – 3

2 129 779.89 8.0921(0.4016)E+08 8.187E+08 7.55E+08 8.36E+08

2s2p2 2Do–2p3 2P 3
2 – 1

2 129 608.44 2.8591(0.0077)E+09 2.337E+09 1.94E+09 2.19E+09
3
2 – 3

2 129 612.57 2.9240(0.0078)E+08 2.362E+08 1.95E+08 2.22E+08
5
2 – 3

2 129 619.37 2.5472(0.0069)E+09 2.092E+09 1.74E+09 1.96E+09

2s22p 2Po–2s2p2 2S 3
2 – 1

2 131 149.22 1.8238(0.0089)E+09 1.848E+09 1.85E+09 1.78E+09
1
2 – 1

2 131 324.23 9.4614(0.0459)E+08 9.572E+08 8.26E+08 9.21E+08

2s22p 2Po–2s2p2 2P 3
2 – 1

2 145 880.65 1.9080(0.0058)E+09 1.918E+09 1.49E+09 1.91E+09
3
2 – 3

2 145 991.58 4.7134(0.0145)E+09 4.742E+09 3.71E+09 4.71E+09
1
2 – 1

2 146 055.66 3.7457(0.0115)E+09 3.770E+09 2.96E+09 3.775E+09
1
2 – 3

2 146 166.60 9.4216(0.0291)E+08 9.480E+08 7.43E+08 9.42E+08

2s2p2 2D–2s23p 2Po 3
2 – 1

2 144 580.39 1.0407(0.0422)E+08 1.065E+08
3
2 – 3

2 144 616.52 1.0450(0.0424)E+07 1.064E+07
5
2 – 3

2 144 623.33 9.3771(0.3803)E+07 9.606E+07

2s22p 2Po–2s23s 2S 3
2 – 1

2 221 171.47 2.0864(0.0096)E+09 2.050E+09
1
2 – 1

2 221 346.48 1.0427(0.0047)E+09 1.024E+09
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Table 8. Continued.

Multiplet Ji–Jk E (cm−1) Aki (un) BHSB [1] SJL [15] NS [16]

2s2p2 4P–2s2p3s 4Po 5
2 – 3

2 230 348.73 1.9493(0.0179)E+09
3
2 – 1

2 230 367.26 3.6079(0.0331)E+09
1
2 – 1

2 230 427.11 7.2190(0.0663)E+08
3
2 – 3

2 230 429.81 5.7792(0.0530)E+08
5
2 – 5

2 230 464.67 3.0391(0.0279)E+09
1
2 – 3

2 230 489.66 1.8068(0.0166)E+09
3
2 – 5

2 230 545.74 1.3033(0.0119)E+09

2s22p 2Po–2s23d 2D 3
2 – 3

2 267 234.42 2.0833(0.0045)E+09 1.859E+09
3
2 – 5

2 267 240.18 1.2491(0.0027)E+10 1.114E+10
1
2 – 3

2 267 409.44 1.0419(0.0023)E+10 9.290E+09

Table 9. Comparison of intercombination transition rates (in s−1) 2s22p 2Po
J –2s2p2 4PJ ′ .

Uncertainties are given in units of the last digit quoted.

2Po
J –4PJ ′ Total from 4PJ ′

1
2 – 1

2
3
2 – 1

2
1
2 – 3

2
3
2 – 3

2
3
2 – 5

2
1
2

3
2 Source

C II

Theory

61.52(70) 69.46(59) 1.465(12) 8.874(70) 44.89(40) 130.98(129) 10.34(9) (adjusted) present

71.91 81.89 1.871 10.22 50.31 153.8 12.09 Galavis et al (1998) [2]

62.1 68.9 1.43 9.34 45.7 131 10.77 Froese Fischer (1994) [14]

Experiment 51(4) 146(10) 12(2) Fang et al (1993) [17]

45.35(15) 125.8(9) 9.61(5) Träbert et al (1999) [18]

50.0(25) 130.0(55) 9.0(10) Smith et al (1999) [19]

N III

Theory

358.5(27) 371.4(28) 9.276(72) 63.89(44) 281.6(20) 729.9(56) 73.17(51) (adjusted) present

417.7 446.2 11.72 69.96 317.1 863.9 81.68 Galavis et al (1998) [2]

346.8 361.5 8.781 60.20 266.0 708.3 68.98 Bell et al (1995) [1]

360.9 371.7 9.11 65.1 281.8 732.6 74.21 Brage et al (1995) [21]

Experiment 308(22) 1019(64) 75(6) Fang et al (1993) [17]

305(6) 755(35) 71.8(11) Träbert et al (1999) [18]

O IV

Theory

1493(8) 1466(8) 39.08(21) 294.4(19) 1194(6) 2959(16) 333.5(21) (adjusted) present

1724 1762 48.36 314.7 1331 3486 363.1 Galavis et al (1998) [2]

1469 1430 38.37 294.2 1172 2899 332.6 Brage et al (1996) [20]

1810 1770 22.8 328 1040 3580 350.8 Merkelis et al (1996) [13]

same experiment for all upper levels. In N III, there is overlap in the decay rates from 4P1/2 and
4P3/2 of N III with [18] but not with 3P5/2, where their experimental value has a rather small
error bar.

Finally, in table 10 we report lifetimes for boron and some boron-like ions for a number
of states. For 2s2p2 2DJ there appears to be some J dependence in Na VII, but for others
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Table 10. Computed lifetimes (in ns) compared with experimental and other theoretical data. In
each case, the first line is present work. When only J -independent data are available, these data
are included only for the lowest level.

Configuration Term J B I C II N III O VI Na VII

2s2p2 2D 5
2 22.90 3.451 1.996 1.406 0.735

2.12l 1.49l

2.04(15)i 0.70(7)a

2.09(8)k 0.680b

2.04m

3
2 22.85 3.441 1.985 1.396 0.713

2.09(8)k 0.69(5)a

0.659b

2S 1
2 0.452 0.358 0.279 0.161

0.411l 0.303l

0.46(6)i 0.248c 0.155(10)a

0.32(6)k 0.36(8)f 0.143b

0.356m 0.29(20)e

2P 1
2 0.245 0.176 0.138 0.0833

0.229l 0.167l

0.190(15)i 0.073(10)a

0.19(5)k 0.083b

0.177m

3
2 0.245 0.176 0.138 0.0830

0.20(6)k

2p3 4So 3
2 0.294 0.206 0.158 0.0923

0.221l 0.168l

0.26(5)k 0.095(10)a

0.204m 0.088 b

2Do 5
2 1.834 0.884 0.585 0.284

0.814l 0.566l

1.70(15)g 0.28(4)a

1.85j 0.862m 0.271b

3
2 1.835 0.885 0.586 0.285

0.272b

2Po 1
2 0.497 0.293 0.218 0.116

0.321l 0.229l

0.282m 0.105b

3
2 0.496 0.294 0.218 0.116

2s23s 2S 1
2 3.996 2.266 0.319 0.124 0.0203

4.02h 0.420(20)i 0.131c

0.334m 0.137(10)d

2s23p 2Po 1
2 50.06 8.973 4.410 1.387 0.223

8.9(3)g 4.15m

3
2 50.04 8.963 4.400 1.386 0.222

2s23d 2D 3
2 4.629 0.349 0.0794 0.0282 0.0038
5
2 4.631 0.349 0.0795 0.0283 0.0038

4.60h 0.793m



2434 G Tachiev and C Froese Fischer

Table 10. Continued.

Configuration Term J B I C II N III O VI Na VII

2s2p3s 4Po 1
2 1.188 0.231 0.0984 0.0169

0.0983c

0.101(5)d

3
2 1.187 0.231 0.0982 0.0168

1.187 0.230 0.0979 0.0167

a [22] (Exp.). b [22] (MCDF). c [24]. d [25]. e [26]. f [27]. g [28]. h [29]. i [30]. j [31]. k [32].
l [15]. m [23].

the J dependence is negligible. For Na VII some interesting recent results have been reported
by Tordoir et al [22]. The paper includes both new experimental measurements and MCDF
calculations that include some correlation. It is interesting to note that, in some instances, this
paper is in closer agreement with experiment (2s2p2 2DJ and 2p3 4So and 2Do) than with the
MCDF calculations. This may be related in part to the fact that an EAL approximation was
used that does not include configuration interaction of orbitals during orbital optimization.
Most experiments have relatively large error bars so that theory agrees moderately well. The
one exception is the lifetime of 2s23s 2S in N III. Quite a few lifetimes for this system have been
reported by Stafford et al [23] and the difference in our two values for the 2s23s 2S lifetime is
less than 5%. For 2s23p 2Po

J the difference is closer to 6%, but in other cases the agreement
is considerably better. Indeed, in N III, our theoretical values are in closer agreement with
Stafford et al [23] than other theory or experiment. The accuracy of a lifetime is determined
primarily by the largest modes of decay. From tables 7 and 8, we see that the uncertainty in the
lifetime of 2s23p 2Po

J may be as large as 4% and 2% in N III and O IV, respectively, but others
are expected to have smaller errors.

7. Conclusions

In this paper we have presented and analysed transition data for a portion of a spectrum
in the boron-like isoelectronic sequence. Results are based on simultaneous optimization of
orbitals for a number of terms and the diagonalization of the Breit–Pauli Hamiltonian (omitting
orbit–orbit terms). By employing systematic, large-scale methods, we are able to monitor the
convergence of the line strength. The recommended values are values scaled to the observed
transition energy. For allowed transitions, we estimate the uncertainty of such data, in per cent,
to be the sum of the discrepancy in the length and velocity form of the line strength plus the
error in the transition energy, both also in per cent. Further comparative studies with more
accurate theories and experiment are needed to evaluate this assumption.

The large Breit–Pauli calculations were performed on the T3E at the National Energy
Research Scientific Computing Center (NERSC) using an MPI version of the code and
employing 64 processors for the larger cases.
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